首页 > 师资与科研 > 师资队伍

师资与科研

教授
康晓宁
2021-02-20 17:07

教师模板.png

康晓宁,统计学博士,教授,硕士生导师,应用统计(商业分析)教研室主任,东北财经大学杰出学者,获“毕业生心目中最有影响力的恩师”称号。本科、硕士毕业于大连理工大学数学系,博士毕业于美国弗吉尼亚理工大学统计系。作为指导教师带领学生团队多次获国家级、省级竞赛奖项。主要研究领域包括统计学习及应用、高维图模型、混合数据建模、模型平均、半参数模型的统计推断、贝叶斯统计等。曾先后主持和参与国家自然科学基金、教育部人文社科基金、辽宁省自然科学基金等项目。其研究成果已发表在Statistica Sinica, Technometrics, Journal of Multivariate Analysis, International Statistical Review, IISE Transactions等国际著名期刊上。


期刊与专著

1.    Kang X., Lian J. and Deng X. (2023+). On Block Cholesky decomposition for sparse inverse covariance estimation, Statistica Sinica, accepted.

2.    Yang M., Kang X.# and Puza B. (2023+). Improved confidence estimation for the binomial proportion with applications to clinical studies, Journal of Biopharmaceutical Statistics, accepted.

3.    Wang M., Kang X., Liang J., Wang K. and Wu Y. (2023+). Heteroscedasticity identification and variable selection via multiple quantiles regression, Journal of Statistical Computation and Simulation, accepted.

4.    Gao Z., Wang X. and Kang X.* (2023). Ensemble LDA via the modified Cholesky decomposition, Computational Statistics & Data Analysis, 188, 107823.

5.    Fan Y., Yang W., Song B., Yan P. and Kang X.* (2023). Enhance the hidden structure of deep neural networks by double Laplacian regularization, IEEE Transactions on Circuits and Systems II: Express Briefs, 70(8), 3114-3118.

6.    Yang W. and Kang X.* (2023). An improved banded estimation for large covariance matrix, Communications in Statistics - Theory and Methods, 52(1), 141-155.

7.    Wang S., Xie C. and Kang X.* (2023). A novel robust estimation for high-dimensional precision matrices, Statistics in Medicine, 42(5), 656-675.

8.    Chen X., Kang X.#, Jin R. and Deng X. (2023) Bayesian sparse regression for mixed multi-responses with application to runtime metrics prediction in fog manufacturing, Technometrics, 65(2), 206-219.

9.    Cao Z., Kang X.# and Wang M. (2023). Doubly robust weighted composite quantile regression based on SCAD-L2, Canadian Journal of Statistics, 51(1), 38-76.

10.  Wang M., Kang X.# and Tian G. (2022). Modified adaptive group Lasso for high-dimensional varying coefficient models, Communications in Statistics - Simulation and Computation, 51(11), 6495-6510.

11.  Kang X., Kang L, Chen W. and Deng X. (2022). A generative modeling approach to modeling data with qualitative and quantitative responses, Journal of Multivariate Analysis, 190, 104952.

12.  Li C., Yang M., Wang M., Kang H. and Kang X.* (2021). A Cholesky-based sparse covariance estimation with an application to genes data, Journal of Biopharmaceutical Statistics, 31(5), 603-616.

13.  Kang X., Ranganathan S., Kang L., Gohlke J. and Deng X. (2021). Bayesian auxiliary variable model for birth records data with qualitative and quantitative responses, Journal of Statistical Computation and Simulation, 91(16), 3283-3303.

14.  Kang X. and Wang M. (2021). Ensemble sparse estimation of covariance matrix for exploring genetic disease data, Computational Statistics & Data Analysis, 159, 107220.

15.  Kang X. and Deng X. (2021). On variable ordination of Cholesky-based estimation for a sparse covariance matrix, Canadian Journal of Statistics, 49(2), 283-310.

16.  Kang X., Chen X., Jin R., Wu H. and Deng X. (2021). Multivariate regression of mixed responses for evaluation of visualization designs. IISE Transactions, 53(3), 313-325.

17.  Kang X., Deng X., Tsui K. and Pourahmadi M. (2020). On variable ordination of modified Cholesky decomposition for estimating time-varying covariance matrices. International Statistical Review, 88(3), 616-641.

18.  Kang X. and Deng X. (2020). Design and analysis of computer experiments with quantitative and qualitative inputs: a selective review. Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery, 10(3), e1358.

19.  Kang X. and Deng X. (2020). An improved modified Cholesky decomposition approach for precision matrix estimation. Journal of Statistical Computation and Simulation, 90(3), 443-464.

20.  Kang X., Xie C. and Wang M. (2020). A Cholesky-based estimation for large-dimensional covariance matrices. Journal of Applied Statistics, 47(6), 1017-1030.

21.  Wang M., Zhao P. and Kang X.* (2020). Structure identification for varying coefficient models with measurement errors based on kernel smoothing. Statistical Papers, 61(5), 1841-1857.

22.  Kang L., Kang X.#, Deng X. and Jin R. (2018). A Bayesian hierarchical model for quantitative and qualitative responses. Journal of Quality Technology, 50(3), 290-308.

23.  Zheng H., Tsui K., Kang X. and Deng X. (2017). Cholesky-based model averaging for covariance matrix estimation. Statistical Theory and Related Fields, 1(1), 48-58.

24.  Wang X., Song L. and Kang X. (2014). Profile likelihood inferences on the partially linear model with a diverging number of parameters. Communications in Statistics - Theory and Methods, 43(1), 13-27.

 

主持项目

辽宁省自然科学基金项目,乔列斯基分解下的高维图模型估计方法研究,主持。

教育部人文社科项目,高维数据背景下协方差阵及其逆矩阵估计的理论研究和应用,主持。

国家自然科学基金重点项目,数智时代下的供应链管理与模式创新,参与。


 

网站声明  |  东北财经大学网络不良信息举报电话:0411-84710133 举报邮箱:advice@dufe.edu.cn  |  辽公网安备21020402000221号     辽ICP备05022350号-1

版权所有:东北财经大学国际商学院     地址:中国·辽宁·大连·大连市沙河口区尖山街217号20号信箱     邮编:116025